Addition Reactions of Heterocyclic Compounds. Part XLVII. ${ }^{1}$ Formation of Benzazepines from Indoles with Dimethyl Acetylenedicarboxylate in Acetonitrile; Crystal Structure of Dimethyl 2,3-Dihydro-2-indol-3-ylbenz[b]azepine-3,4-dicarboxylate

By R. M. Acheson * and J. N. Bridson, Department of Biochemistry, South Parks Road, Oxford

T. S. Cameron, Chemical Crystallography Laboratory, South Parks Road, Oxford

1-Methylindole reacts with dimethyl acetylenedicarboxylate in pure acetonitrile to give dimethyl 1-methylbenz-[b]azepine-3.4-dicarboxylate. This undergoes a Diels-Alder addition across the 2-and 5 -positions with one further mol. equiv. of the acetylene, and with 1 -methylindole and acid gives dimethyl 2,3-dihydro-1-methyl-2(1 -methylindol-3-yl)benz[$b]$ azepine-3,4-dicarboxylate. Treatment of indole with the acetylenic ester in acetonitrile only gives the corresponding 2,3-dihydro-2-(indol-3-yl) benzazepine (18), the structure of which has been confirmed by an X-ray diffraction study. Crystals of (18) are triclinic, $a=10.46, b=11.50, c=8.85 \AA, \alpha=$ $91 \cdot 5, \beta=114 \cdot 6, \gamma=106 \cdot 2$, space group $P \overline{1}$. The structure was refined to $R 11 \cdot 4 \%$ for 2989 independent reflections. Some reduction products of these azepines are described, and their mode of formation is discussed.

Diels, Alder, and Lubbert ${ }^{2}$ described the formation of the fumarate (6) from 1,2-dimethylindole with dimethyl acetylenedicarboxylate in the absence of solvent, but did not elucidate the stereochemistry. With methanol, as the reaction medium, Johnson ${ }^{3}$ obtained the same compound, and the corresponding products from indole and its 1- and 2-methyl derivatives, which he showed were the fumarates. These fumarates gave the corresponding maleates in acetic acid under reflux, ${ }^{3}$ or on alumina, ${ }^{4}$ and the fumarates were re-formed on irradiation of the maleates in ethanol. ${ }^{3}$ Treatment of 1-methylindole with the acetylenic ester in the absence of solvent, however, gave a $2: 1$ molar adduct considered ${ }^{5}$ to possess structure (1). This formulation was contested, ${ }^{6}$ and independently revised ${ }^{3}$ to structure (2), but our new results ${ }^{7}$ show that the compound is the benzazepine (9).

(1)

(2)

In acetonitrile aried with phosphorus pentoxide (a solvent which is not proton-donating and gives relatively little tar in reactions involving dimethyl acetylenedicarboxylate ${ }^{8}$), reaction of the acetylenic ester with 1-methylindole gave a mixture of the benzazepine (9), small quantities of the maleate (4), the fumarate (5), and a minor product (15).

Plieninger and Wild ${ }^{9}$ obtained a corresponding 2 -ethoxybenzazepine from 2 -ethoxy-1-methylindole and the acetylenic ester, and suggested that it was formed

[^0]via a cyclobutene intermediate $[c f .(7)]$, which then underwent ring-opening to the benzazepine. The enol ether

system, however, could be at least partially responsible for the reaction as enol ethers undergo similar cyclo-

[^1]additions. ${ }^{10}$ The idea of a cyclobutene intermediate is supported by the formation of compound (13) from 1-benzyl-3-cyano-1,4-dihydropyridine with the ester, ${ }^{11}$ and of compound (14), which on heating yields the corresponding benzazepine, from 1 -acetyl- 3 -piperidinoindole with methyl propiolate. ${ }^{12}$ In our case of 1-

methylindole, the heterocyclic nitrogen atom and the 2,3 -double bond must be behaving as an enamine system, and the concept of the formation of cyclobutenes from enamines via a non-concerted process ${ }^{13}$ involving zwitterions [e.g. (3)] is supported both by the large solvent effect on this type of reaction in particular cases ${ }^{14}$ and by the high yields ${ }^{3}$ of fumarates [$c f$. . (6); 76\%] obtained from the indoles and the acetylenic ester in methanol where a proton is available to quench the zwitterion [e.g. (3)] as it is formed.

The minor product (15) obtained in the preparation of the benzazepine (9) was also obtained from this benzazepine with an excess of dimethyl acetylenedicarboxylate, and its n.m.r. spectrum (see Table 1) showed two six-proton singlets for the ester methyl groups, indicating the symmetry of the molecule. Cycloadditions of this type have been observed ${ }^{15}$ for 1-ethoxycarbonylazepine with tetracyanoethylene and N-phenylmaleimide, but no reaction was observed with dimethyl acetylenedicarboxylate, even above 100°.

The benzazepine (9) was stable to attempted catalytic hydrogenation, but reduction with sodium amalgam with methanol and zinc with hydrochloric acid gave compounds (10) and (11), respectively. The u.v. spectrum of the 4,5 -dihydrobenzazepine (10) resembled those ${ }^{16}$ of the azepines (16) and (17) (see Table 2) and in the n.m.r. spectrum the 4 - and 5 -protons formed a well defined AMX system. The u.v. spectrum of the 2,3 -dihydro-compound (11) is closely similar to those of the methoxy-compound (12) and the indolylbenzazepines (18)-(21).

[^2]Table 1
N.m.r. spectra (100 MHz ; τ values; J in Hz) with internal tetramethylsilane as reference

Compd. (9)	$\begin{gathered} \text { Solvent } \\ \mathrm{CDCl}_{3} \end{gathered}$	Proton resonances $2 \cdot 5-3 \cdot 3$ ($\mathrm{m}, \mathrm{Ar}-\mathrm{H}_{4}, 2$ - and 5-H), 6.93 ($1-\mathrm{Me}$)	$\begin{gathered} \text { Ester } \\ \text { methyl } \\ \text { groups } \\ 6 \cdot 20,6 \cdot 30 \end{gathered}$
(10)	CDCl_{3}	$\begin{aligned} & 2 \cdot 6-3 \cdot 0\left(\mathrm{~m}, \mathrm{Ar}-\mathrm{H}_{4}\right), 6.52 \\ & (1-\mathrm{Me}),{ }^{\prime} 2 \cdot 33(2-\mathrm{H}), 5 \cdot 76 \\ & (\mathrm{q}, 4-\mathrm{H}), 6 \cdot 69\left(\mathrm{q}, J_{4.5 \mathrm{~A}}\right. \\ & \left.5 \cdot 5,5-\mathrm{H}_{\mathrm{A}}\right), 6 \cdot 89\left(\mathrm{q}, J_{4.5 \mathrm{~B}}\right. \\ & \left.3 \cdot 0, J_{5 A .5 \mathrm{~B}} 13 \cdot 0,5-\mathrm{H}_{\mathrm{B}}\right) \end{aligned}$	6.27, $6.49{ }^{\text {a }}$
(12)	CDCl_{3}		6.20, $6 \cdot 36$
(15)	CDCl_{3}		$\begin{aligned} & 6 \cdot 1,0 \cdot 17 \\ & 6 \cdot 19,6 \cdot 19 \end{aligned}$
(18)	$\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$		6.32, 6.38
(21)	$\mathrm{Me}_{2} \mathrm{SO}$	$\begin{aligned} & 2 \cdot 2-3.5\left(\mathrm{~m}, \quad \mathrm{Ar}^{2}-\mathrm{H}_{8}, \quad 2^{\prime}-\mathrm{l}\right. \\ & 5-\mathrm{H}), 4 \cdot 34(\mathrm{~d}, 2-\mathrm{H}), 5 \cdot 16 \\ & \left(\mathrm{~d}, J_{2 .}{ }^{3} 4 \cdot 3,3-\mathrm{H}\right), 6 \cdot 50 \\ & \left(1^{\prime}-\mathrm{Me}\right), 6 \cdot 69(1-\mathrm{Me}) \end{aligned}$	6.25, $6 \cdot 29$
(22)	Pyridine		
(23) ${ }^{\text {d }}$	Pyridine	4.08 (d, $2-\mathrm{H}), 5.60^{\circ}$ and $5 \cdot 86,{ }^{f}\left(\mathrm{~m}, 3-\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \cdot \mathrm{OH}\right.$ $J_{\mathrm{H}_{\mathrm{A}} . \mathrm{H}_{\mathrm{B}}} 10 \cdot 4$), $6 \cdot 15(\mathrm{~m}$, $J_{2.3} 3 \cdot 3, J_{3 . \text { HA }} 4 \cdot 3, J_{3 . \text { HB }}$ $8.8,3-\mathrm{H}), 6.43$ ($1-\mathrm{Me}$), 6.96 ($1^{\prime}-\mathrm{Me}$)	
(24)	CDCl_{3}	$\begin{aligned} & 2 \cdot 4-3 \cdot 2\left(\mathrm{~m}, \mathrm{Ar}-\mathrm{H}_{8}\right), 4 \cdot 87 \\ & \left(\mathrm{~d}, J_{2}, 6 \cdot 5,2-\mathrm{H}\right), 6 \cdot 2- \\ & 7 \cdot 1\left(\mathrm{~m}, 3-, 4-, 5-, 5-\mathrm{H}_{4}\right), 7 \cdot 14 \\ & \left(\mathbf{1}^{\prime}-\mathrm{Me}\right), 7 \cdot 21(1-\mathrm{Me}) \end{aligned}$	6.22, $6 \cdot 70$
(25)	Pyridine	$\begin{aligned} & 4 \cdot 54\left(\mathrm{~d}, J_{2.3} 7 \cdot 5,2-\mathrm{H}\right), 5 \cdot 86 \\ & \text { and } 6 \cdot 5-7 \cdot 4(\mathrm{~m}, \text { aliphatic } \\ & \left.\mathrm{H}_{\mathrm{s}}\right), \quad 6 \cdot 43 \quad\left(1^{\prime}-\mathrm{Me}\right), \quad 7 \cdot 12 \\ & (1-\mathrm{Me}) \end{aligned}$	
(26)	Pyridine		
(27)	CDCl_{3}	$0.72(\mathrm{~N}-\mathrm{H}), \mathrm{b} 1.47$ and 1.70 (vinyl H_{2}), $2 \cdot 0-3 \cdot 4$ (m, Ar- H_{8}, vinyl H_{2}), 7.07 (NMe_{2})	6.32, $6 \cdot 40$

[^3]In the presence of hydrochloric acid, which presumably protonates the 3 -position, the benzazepine (9) adds
${ }_{14}$ K. C. Brannock, R. D. Burpitt, A. Bell, and C. A. Kelly, J. Org. Chem., 1964, 29, 801.
${ }_{15}$ A. S. Kende, P. T. Izzo, and J. E. Lancaster, J. Amer. Chem. Soc., 1965, 87, 5044.
${ }^{16}$ M. Anderson and A. W. Johnson, J. Chem. Soc., 1965, 2411.
methanol, indole, or 1 -methylindole to yield respectively the dihydrobenzazepines (12), (20), and (21), which have similar u.v. spectra. The n.m.r. spectra of compounds (12) and (21) show the 2 - and 3 -proton signals as doublets

(18) $R^{\prime}=R^{2}=H$
(22) $\mathrm{R}=\mathrm{H}$
(19) $R^{1}=H, R^{2}=M e$
(23) $R=M e$
(20) $R^{1}=M e, R^{2}=H$
(21) $R^{1}=R^{2}=M e$
$\mathrm{E}=\mathrm{CO}_{2} \mathrm{Me}$

(24) $\mathrm{R}=\mathrm{CO}_{2} \mathrm{Me}$
(25) $\mathrm{R}=\mathrm{CH}_{2} \cdot \mathrm{OH}$

Table 2
U.v. spectra (methanol) ${ }^{a}$

Compd.
$\lambda_{\text {max. }} / \mathrm{nm}\left(10^{-4} \varepsilon\right)$
(9) $238(1.56), 260(2.40), 283(1 \cdot 28), 315(0.38)$
(9) ${ }^{b} 240(1 \cdot 94), 253(2 \cdot 48), 281(1 \cdot 15), 289(1 \cdot 25), 328(0 \cdot 30)$, 373 (0.30)
c $\quad 250(1.92) .282(1.18), 311$ (0.79)
(10) $234(0.80), 313(2.32)$,
(11) $245(2 \cdot 96), 254(3.17), 263(2 \cdot 83), 291(1 \cdot 31), 299(1 \cdot 16)$, 387 (0.53)
(12) $243(2.64), 252(3.13), 288(1.55), 296(1.40), 371(0.49)$
(12) ${ }^{2} 253(2 \cdot 75), 287(1 \cdot 46), 321(0.36), 271(0 \cdot 30)$
(15) $232(1.75), 261(0.75), 338(0.33)$
(17) $223(1 \cdot 34), 247(0.48), 310(1 \cdot 17)$
(17) $229(1.39), 326(1-41)$
(18) $219(3 \cdot 36), 242(1 \cdot 85), 255(2 \cdot 03), 283(1 \cdot 10), 290(1 \cdot 10)$, $390(0.42)$
(19) $223(4.77)$, $250(1.78), 290(1.01), 380(0.20)$
(20) $220(4 \cdot 5)$), $245(2 \cdot 38), 255(2 \cdot 58), 283(1 \cdot 27), 290(1 \cdot 31)$, $300(0.95), 394(0.44)$
(21) $227(2.56), 252(1.94), 255(1.96), 282(0.94), 291(1.03)$, 394 (0.43)
(22) $230(4.04), 274(1.03), 284(0.90), 291(0.64), 335(0.32)$
(22) ${ }^{b} 240(1.71), 254(1.67), 280(0.90), 288(0.71)$
(23) $230(4.39), 245(2.92), 278(1.12), 283(0.94), 301(0.70)$, $345(0.35)$
(23) ${ }^{b} 219(4 \cdot 41), 255(1 \cdot 40), 280(0.91), 295(0.50)$
(24) $214(4.07), 224(4.17), 260(1 \cdot 29), 292(0.84)$
(24) b 222 (4.03), $275(0.65), 287(0.67), 294(0.65)$
(25) $224(4 \cdot 00), 245(1 \cdot 16), 287(0 \cdot 79)$
$(25){ }^{b} 224(3.71), 255(0.63), 267(0.64)$
(26) $219(4 \cdot 52), 247(2 \cdot 51), 258(2 \cdot 78), 283$ (1-25), 290 (1-29),

303 (0.90), 395 (0.54)
(27) $\quad 225$ (3.62), 264 (2.65), 295 (2.09)
${ }^{a}$ Inflection in italics. ${ }^{b}$ Acidified with 70% aqueous perchloric acid. © Dimethyl 2 -ethoxy-1-methylbenz[b]azepine-4,5-dicarboxylate. ${ }^{9}$
in the $\tau 4 \cdot 3-5 \cdot 4$ region. The adduct (21) is the major product from reaction of 1 -methylindole and dimethyl acetylenedicarboxylate in acetonitrile. Its formation is probably due to the presence of small quantities of
water, and possibly acid, as the addition of 0.5% of water to our purified acetonitrile again gave this adduct (21) as the main product. The reduction with lithium aluminium hydride of the diester (21) gave the corresponding diol (23), the n.m.r. spectrum of which showed that the methylene protons of the 3 -hydroxymethyl group were non-equivalent. Catalytic hydrogenation of this diol gave the tetrahydrobenzazepine (25). Although the diester (21) was stable under these conditions sodium amalgam and methanol reduced the 4,5 -double bond, giving compound (24).

Indole and dimethyl acetylenedicarboxylate gave the 2 -(indol-3-yl)benzazepine (18) in both purified and untreated acetonitrile. Possibly, the expected $1: 1$ adduct (8) is protonated by indole itself in the absence of other proton sources. The benzazepine (18) was alkylated only on the indolic nitrogen atom by methyl iodide and sodium hydride to give an isomer (19) of compound (20). A suspension of the adduct (18) in ether was stable to lithium aluminium hydride, but with sodium dihydrobis-(2-methoxyethoxy)aluminate in benzene under reflux small quantities of the lactone (26)

(27)

and the diol (22) were formed. The lactone possessed a u.v. spectrum similar to that of the original diester (18) showing that the non-conjugated 3 -ester group had suffered reduction, an n.m.r. spectrum consistent with the structure proposed, and on reduction with lithium aluminium hydride readily gave the diol. The diol (23) gave tars with tosyl or acetyl chloride and pyridine and with methyl iodide or dimethyl sulphate, and decomposed rapidly in dilute aqueous acid.
The dihydrobenzazepines (18), (20), and (21) were recovered unchanged after attempted dehydrogenation with selenium dioxide or palladised charcoal in decalin under reflux, and bromination gave unstable products or tars. Treatment of the indole derivative (18) with phosphoryl chloride and dimethylformamide, ${ }^{17}$ followed
${ }^{17}$ G. Martin and M. Martin, Bull. Soc. chim. France, 1963, 1637; W. Jentzsch and M. Seefelder, Ger. P. 1,175,223 (Chem. Abs., 1964, 61, 13238); K. H. Beyer, H. Eilingsfeld, and H. Weidinger, Ger. P. 1,110,625 (Chem. Abs., 1962, 56, 3363).
by aqueous potassium hydroxide, gave the indole (27) apparently via attack on the azepine nitrogen atom followed by a Hofmann-type elimination. Survival of the amidine group in the basic conditions is perhaps surprising, ${ }^{18}$ but some N-arylamidines are hydrolysed slowly by bases. ${ }^{19}$ The structure of the indole (27) was deduced mainly from the molecular formula and the absence of resonances (excluding OMe) in the saturated $\mathrm{C}-\mathrm{H}$ region of the n.m.r. spectrum, which indicated the opening of the dihydroazepine ring.

One of the major fragmentations of dihydroazepines in the mass spectrometer is the extrusion of two ring

Table 3

Mass spectra; m / e values with the $\%$ of the base peak in parentheses
Compd.
(9) $273(87), 272(100), 242(59), 201(43), 200(99), 199(25)$, 169(39), 155(21), 154(21), 143(39), 131(94), 130(30), 128(26), $121(21), 115(23) ; m^{*} 272 \cdot 5,199 \cdot 5,189 \cdot 5$, 146.5, $130 \cdot 5,185,63$
(10) $275(0.9), 274(9), 273(45), 244(5), 243(6), 217(19)$, 216(100), 184(16), 158(13), 157(62), 156(12), 142(7), 128(7), 115(14); m^{*} 169•5, 137, 132, 114•5, 106.5, 93
(12) $305(5.7), 274(20), 273(92), 242(17), 214(19), 200(72)$, 155(14), 154(14), 143(30), 142(13), 140(17), 132(13), 131(100), 130(13), $128(20), 115(19) ; m^{*} 189 \cdot 6,185$, $153 \cdot 3,146 \cdot 5,129 \cdot 5,105,93,62 \cdot 5$
(15) $415(70), 384(7), 356(14), 325(23), 324(100), 312(5)$, 297(18), 265(25), 253(6), 179(5); $m^{*} 305 \cdot 5,295,283$, 253, 238
(18) $376(92), 317(64), 285(44), 284(33), 283(32), 259(58)$, 257(63), 256(46), 232(37), $200(30), 130(32), 129(44)$, 128(100), 117(51); $m^{*} 315,267,255,209$
(21) 406(68), 347(23), 287(31), 286(98), 263(59), 262(100), 226(37), 184(20), 168(22), 158(23), $157(33), 145(22)$, 144(47), 132(21), 131(34), $130(21), 120(51), 115(17)$; m^{*} 314, 233, 225.5, 201•5, 179, 169, 166.5, 157
(22) 348(100), 331(17), 317(23), 299(22), 187(26), 174(32), 158(16), 144(81), 143(17), 131(27)
(23) $350(100), 319(16), 263(15), 262(69), 230(45), 212(48)$, $200(22), 160(27), 158(23), 145(19), 144(68), 132(38)$, 131(19), $121(18), 120(40) ; m^{*} 315,291,260 \cdot 5,195 \cdot 5$, 109, 104, 79
(24) $320(90), 302(33), 289(57), 272(32), \quad 271(56), 232(34)$, 173(38), 160(32), 144(48), 143(40), 130(100), 129(38), 128(36), 117(42); m^{*} 261, 231, 93 .5
(25) $316(100), 272(14), 271(64), 270(11), 269(12), 257(16)$, 256(20), 143(12), 130(13), 128(16), 117(17)
(26) $431(10), 430(22), 429(14), 372(37), 327(14), 326(10)$, 325(36), 312(10), 269(11), 268(14), 267(13), 187(17), 186(100), $133(18), 130(16) ; m^{*} 429 \cdot 5,368 \cdot 5,326$, 319, 310, $295 \cdot 5,266,200 \cdot 5,84 \cdot 5,80 \cdot 5$
carbon atoms with their substituents with an apparent contraction to a five-membered ring. ${ }^{20}$ Following this pattern, the azepines (18), (21), and (24) lost a fragment corresponding to dimethyl fumarate and compounds (22), (23), and (25) lost a fragment corresponding to $\mathrm{HO} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}: \mathrm{CH} \cdot \mathrm{CH}_{2} \cdot \mathrm{OH}$. The azepine (9) also shows the apparent loss of dimethyl acetylenedicarboxylate (confirmed by a metastable ion) to give a very abundant ion.

[^4]An X-ray diffraction study of the benzazepine (18) confirmed the structure (see Figure 1) deduced from chemical data. The molecular parameters are shown in

Figure 1 Projection of the unit cell of the benzazepine (18) down the a-axis

Figure 2 The interatomic distances of the benzazepine (18)
Figures 2 and 3. The angles in the seven-membered ring are all larger than expected for a strain-free conformation, the angle at the nitrogen atom (131°) being particularly large. A noteworthy feature is that the $N(1)$,

[^5]$\mathrm{C}(4), \mathrm{C}(5), \mathrm{C}(5 \mathrm{a})$, and $\mathrm{C}(9 \mathrm{a})$ and the 4 -carbonyl group with the associated oxygen atom, are coplanar (see Table 4). Resonance interactions between this carbonyl group and

Figure 3 The interbond angles of the benzazepine (18)
the lone pair on the nitrogen atom can therefore occur, and the small deviations observed for our compound from the accepted mean bond lengths between carbon, nitrogen, and oxygen atoms are consistent with a contribution from structure (28). This idea also accounts

Table 4
Deviations from the least-squares best planes for the three planes involving the atoms for which data is given ${ }^{a}$ for the benzazepine (18)

Atom		Deviations (\AA)
$\mathrm{N}(1)$	0.036	
$\mathrm{C}(2)$	$0.715^{\text {b }}$	
C(3)	$-0.010^{\text {b }}$	-0.012
$3-\mathrm{COOCH}_{3}$		0.008
$3-\mathrm{COOCH}_{3}$		0.002
$3-\mathrm{COOCH}_{3}$		0.017
$3-\mathrm{COOCH}_{3}$		-0.014
C(4)	0.054	0.008
$4-\mathrm{COOCH}_{3}$	0.002	-0.001
$4-\mathrm{COOCH}_{3}$	-0.047	-0.003
$4-\mathrm{COOCH}_{3}$	0.005	-0.014
$4-\mathrm{COOCH}_{3}$	-0.013	0.010
C(5)	0.061	
C(5a)	-0.026	
$\mathrm{C}(9 \mathrm{a})$	-0.072	

[^6]for the facts that (a) compounds of this type are not attacked by methyl iodide and methyl sulphate under normal alkylating conditions while the corresponding diols [e.g. (22)] are, and (b) unlike 2 -aminocinnamic

[^7] ${ }_{22}$ K. T. Potts and J. E. Saxton, J. Chem. Soc., 1954, 2641.
acid ${ }^{21}$ they do not dissolve in concentrated hydrochloric acid while the diols are sufficiently basic to do so.

EXPERIMENTAL

Instruments and procedures have been described previously. ${ }^{1}$ Dimethyl acetylenedicarboxylate was redistilled immediately before use and indole was recrystallised from light petroleum (b.p. $40-60^{\circ}$) (referred to as petrol) and stored in vacuo over phosphorus pentoxide. 1-Methylindole, prepared from sodioindole and methyl iodide ${ }^{22}$ was freed from indole by heating a 30% solution in xylene under reflux over sodium for 2 days, then removing the solvent in vacuo. The residue gave 1 -methylindole as an oil, b.p. $117-118^{\circ}$ at $18 \mathrm{mmHg}, n_{\mathrm{D}}{ }^{20} 1.6060$ (lit., ${ }^{23} 1 \cdot 6062$).

1-Methylindole and Dimethyl Acetylenedicarboxylate.-1Methylindole $(23.0 \mathrm{~g})$ and the acetylene (17 g) were heated under reflux in acetonitrile (150 ml ; previously distilled from phosphorus pentoxide) for 6 days and the solvent was removed by evaporation. Methanol (100 ml) was added and the mixture deposited a red solid on cooling overnight. Recrystallisation gave dimethyl 1-methylbenz $[\mathrm{b}]$ azepine-3,4dicarboxylate (9) as orange prisms (3.2 g), m.p. 105-107 ${ }^{\circ}$ (from methanol) (Found: C, 66.2; H, 5.6; N, 5.1. $\mathrm{C}_{15} \mathrm{H}_{15}{ }^{-}$ NO_{4} requires C, $\left.65 \cdot 9 ; \mathrm{H}, 5 \cdot 5 ; \mathrm{N}, 5 \cdot 1 \%\right)$, $\mathrm{v}_{\text {max }} 1730 \mathrm{~s}, 1708 \mathrm{~s}$, $1640 \mathrm{~s}, 1594 \mathrm{~m}$, and $1574 \mathrm{w} \mathrm{cm}^{-1}$. Evaporation of the combined mother liquors gave a red oil, which was chromatographed on alumina (1 kg). Elution with benzene-petrol ($1: 1 \mathrm{v} / \mathrm{v} ; 25^{1}$) gave first dimethyl (1 -methylindol-3-yl)fumarate (5) $(2 \cdot 1 \mathrm{~g})$, yellow prisms, m.p. $83-85^{\circ}$ (from ether) (lit., ${ }^{3} 85-85 \cdot 5^{\circ}$), followed by dimethyl 2,3 -dihydro-1-methyl-2-(1-methylindol-3-yl)bens[b]azepine-3,4-dicarboxylate (21) $(0.39 \mathrm{~g})$, pale yellow plates, m.p. $158-159^{\circ}$ (from methanol) (Found: C, 71.2; H, 6.0; N, 6.7. $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires $\mathrm{C}, 71 \cdot 3 ; \mathrm{H}, 5 \cdot 9 ; \mathrm{N}, 7 \cdot 0 \%$).

Elution with benzene (2.51) then gave more azepine (9) (3.7 g) followed by dimethyl (1 -methylindol-3-yl)maleate (4) (0.05 g), plates, m.p. $135-137^{\circ}$ (from methanol) (lit., ${ }^{3}$ 138-139.5 $)$, and an unidentified yellow solid which cry: \cdots ed from methanol as yellow rods (0.34 g), m.p. $175 \ldots{ }^{\circ}$ (Found: C, 60.9; H, 4.6; N, 3.1. $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{NO}_{8}$ requires $\mathrm{C}, 61 \cdot 0 ; \mathrm{H}, 4 \cdot 6 ; \mathrm{N}, 3 \cdot 4 \%$), $\nu_{\text {max }} 1750 \mathrm{~s}, 1730 \mathrm{~s}$, $1703 \mathrm{~s}, 1622 \mathrm{~m}, 1577 \mathrm{w}$, and $1511 \mathrm{~s} \mathrm{~cm}{ }^{-1}, \lambda_{\max } 248(2.50)$, $290 \mathrm{infl}(1.06), 295(0.28)$, and $450(0.55) \mathrm{nm}, \tau(100 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 2 \cdot 5-2 \cdot 9(4 \mathrm{H}, \mathrm{m}), 3.32(1 \mathrm{H}, \mathrm{q}, J 9.6$ and $2 \cdot 8), 3.91$ (q, $J 9 \cdot 6$ and $2 \cdot 6$), $4 \cdot 73(1 \mathrm{H}, \mathrm{t}, J 2 \cdot 8), 6.05(3 \mathrm{H}, \mathrm{s}), 6 \cdot 20(3 \mathrm{H}$, s), $6 \cdot 30(3 \mathrm{H}, \mathrm{s})$, and $6 \cdot 40(3 \mathrm{H}, \mathrm{s}), \mathrm{m} / e 413\left(M^{+}, 38 \%\right), 412$ (43), 382 (14), 381 (7), 366 (7), 353 (22), 354 (100), 308 (6), 295 (10), 244 (6), 237 (22), 179 (21), 178 (13), 177 (5), and 103 (10), $m^{*} 351 \cdot 5$ and 303.

Further elution with benzene gave successively tetramethyl 8-methyl-8-azatricyclo $\left[7,2,2,0^{2,7}\right]$ trideca-2(7),3,5,10,12-pentaene-10,11,12,13-tetracarboxylate (15) (0.27 g), yellow rods, m.p. 160-163 (from methanol) (Found: C, 60.7; H, $5 \cdot 1 ; \mathrm{N}, 3 \cdot 4 . \quad \mathrm{C}_{21} \mathrm{H}_{21} \mathrm{NO}_{8}$ requires $\mathrm{C}, 60 \cdot 7 ; \mathrm{H}, 5 \cdot 1 ; \mathrm{N}, 3 \cdot 4 \%$), $\nu_{\text {max. }} 1738 \mathrm{~s}, 1720 \mathrm{~s}, 1662 \mathrm{w}, 1643 \mathrm{~m}, 1606 \mathrm{~m}$, and $1571 \mathrm{w} \mathrm{cm}^{-1}$ max tetramethyl 9 -methyl-trans-1,2-dihydrocarbazole-1,2,3,4-tetracarboxylate (0.32 g), pale yellow prisms, m.p. $173-175^{\circ}$ (from methanol), (lit., ${ }^{3}$ 175-176.5 ${ }^{\circ}$). Elution with increasingly polar solvents gave trimethyl 5,6-dihydro-5-methyl-6-oxophenanthridine-7,8,9-tricarb-

[^8]oxylate ($0 \cdot 15 \mathrm{~g}$), needles, m.p. $169-170^{\circ}$ (from methanol) (lit., ${ }^{3}$ 171-172.5).

Treatment of Dimethyl 1-Methylbenz[b]azepine-3,4-dicarboxylate with Dimethyl Acetylenedicarboxylate.-The benzazepine (9) (1.4 g) and the acetylene (0.70 g) were heated at 110° for 3 days. Trituration of the mixture with ether gave the adduct (15) ($1.6 \mathrm{~g}, \mathbf{7 5 \cdot 3} \%$), yellow rods, m.p. and mixed m.p. 161- 162° (from methanol).

Reactions of Dimethyl 1-Methylbenz[b]azepine-3,4-dicarboxylate (9).-(i) The azepine (0.5 g) in methanol (50 ml) was stirred with 4% sodium amalgam (10 g) for 2 h and the solution was decanted from remaining amalgam and poured into ice-water (150 ml). The resulting precipitate was recrystallised from methanol to give dimethyl 4,5-dihydro-1-methylbenz[b]azepine-3,4-dicarboxylate (10) ($0.41 \mathrm{~g}, 8 \mathrm{l} \cdot 4 \%$), plates, m.p. 120-120.5 (Found: C, 65.6; H, 6.1; N, 5.0. $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NO}_{4}$ requires $\mathrm{C}, 65 \cdot 4 ; \mathrm{H}, 6 \cdot 2 ; \mathrm{N}, 5 \cdot 1 \%$), $\nu_{\text {max. }} 1748 \mathrm{~s}$, $1707 \mathrm{~s}, 1623 \mathrm{~s}, 1610 \mathrm{~m}, 1587 \mathrm{~s}$, and $1510 \mathrm{~s} \mathrm{~cm}^{-1}$.
(ii) The azepine (9) (0.5 g) was dissolved in a mixture of methanol (50 ml) and aqueous concentrated hydrochloric acid (20 ml); the solution was stirred with zinc dust (2 g) for 30 min and filtered. The filtrate was poured into water $(200 \mathrm{ml})$, the mixture was extracted with ether $(3 \times 100 \mathrm{ml})$, and the organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to leave a tarry solid. Recrystallisation from methanol gave dimethyl 2,3-dihydro-1-methylbenz[b]azepine-3,4-dicarboxylate (11) as pale yellow prisms ($0.032 \mathrm{~g}, 6.3 \%$), m.p. $289-$ 290° (Found: C, 65.7 ; H, 6.3; N, 5.1. $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{4}$ requires $\mathrm{C}, 65 \cdot 4 ; \mathrm{H}, 6.2 ; \mathrm{N}, 5 \cdot 1 \%$), $\nu_{\max } 1750 \mathrm{~s}, 1735 \mathrm{~s}, 1714 \mathrm{~s}$, $1703 \mathrm{~s}, 1642 \mathrm{~m}, 1609 \mathrm{~m}, 1563 \mathrm{~m}$, and $1509 \mathrm{~s} \mathrm{~cm}^{-1}$. нуи
(iii) The azepine (9) $(0.1 \mathrm{~g})$ in a mixture of methturet (5 ml) and aqueous concentrated hydrochloric acid (5 ml) was poured on crushed ice (20 g) and the red tarry precipitate collected by filtration. Recrystallisation from methanol gave the original azepine (0.03 g) and dimethyl 2,3-dihydro-2-methoxy-1-methylbenz[b]azepine-3,4-dicarboxylate (12), pale yellow rhomboids $(0.035 \mathrm{~g}, 32.4 \%)$, m.p. 112-114 ${ }^{\circ}$ (Found: C, 62.9; H, 6.7; N, 4.4. $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{5}$ requires C, $62.9 ; \mathrm{H}, 6.3 ; \mathrm{N}, 4.6 \%$), $\nu_{\text {max. }} 1736 \mathrm{~s}, 1704 \mathrm{~s}, 1648 \mathrm{~s}, 1602 \mathrm{~m}$, 1561 m , and $1501 \mathrm{~s} \mathrm{~cm}^{-1}$.
(iv) The azepine (9) (1.4 g) and 1 -methylindole (0.7 g) were heated under reflux in acetonitrile (15 ml) containing aqueous concentrated hydrochloric acid (5 drops) for 1 h . On cooling, the azepine (21) separated as pale yellow prisms ($0.9 \mathrm{~g}, 45.0 \%$), m.p. and mixed m.p. $157-158^{\circ}$ (from methanol).
(v) A similar experiment to (iv) with indole gave dimethyl 2,3-dihydro-2-(indol-3-yl)-1-methylbenz[b]azepine-3,4dicarboxylate (20) ($1.7 \mathrm{~g}, 89 \cdot 4 \%$), m.p. 228- 229° (Found: $\mathrm{C}, 70.5 ; \mathrm{H}, 5.8 ; \mathrm{N}, 7.4 . \quad \mathrm{C}_{23} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires $\mathrm{C}, 70.7 ; \mathrm{H}$, $5 \cdot 7 ; \mathrm{N}, 7 \cdot 2 \%$), $\nu_{\text {max }} 3360 \mathrm{~m}$ (broad), $1745 \mathrm{~s}, 1672 \mathrm{~s}, 1649 \mathrm{w}$, $1609 \mathrm{~m}, 1576 \mathrm{w}$, and $1504 \mathrm{~s} \mathrm{~cm}^{-1}$.

Reduction of Dimethyl 1,2-Dihydro-1-methyl-2-(1-methyl-indol-3-yl)benz[b]azepine-3,4-dicarboxylate (21).-(i) Lithium aluminium hydride ($0 \cdot 1 \mathrm{~g}$) was added in small portions with stirring to the azepine (21) (0.4 g) in dry ether (50 ml). After stirring for 3 h , excess of hydride was destroyed with methanol, water (50 ml) was added, and the mixture was extracted with ether ($3 \times 50 \mathrm{ml}$). Evaporation of the dried (MgSO_{4}) extract and recrystallisation of the residue from benzene gave 2,3-dihydro-2-(1-methylindol-3-yl)-1-methylbenz[b]azepine-3,4-diyldimethanol (23) ($0.23 \mathrm{~g}, 66 \cdot 7 \%$) as needles, m.p. $172-173^{\circ}$ (Found: C, 75.7; H, 6.9; N, $8.1 . \mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires $\mathrm{C}, 75.8 ; \mathrm{H}, 6.9 ; \mathrm{N}, 8.0 \%$), $\nu_{\text {max }}$ 3270 m (broad), 1591 m , and $1555 \mathrm{w} \mathrm{cm}^{-1}$.

The compound (24) (0.4 g) in methanol (200 ml) was shaken with 5% palladium-charcoal ($0 \cdot 2 \mathrm{~g}$) for 3 h under hydrogen (3 atm). Filtration, evaporation, and recrystallisation gave 2,3,4,5-tetrahydro-1-methyl-2-(1-methylindol-3$y l)$ benz $[\mathrm{b}]$ azepine-3,4-diyldimethanol (25), prisms (0.26 g , 65.0%), m.p. $165-168^{\circ}$ (Found: C, 75.5 ; H, $7 \cdot 2$; N, 7.8. $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires $\mathrm{C}, 75 \cdot 4 ; \mathrm{H}, 7 \cdot 5 ; \mathrm{N}, 8.0 \%$), $\nu_{\text {max. }} 3410 \mathrm{~m}$ (broad), 1608 m , and $1586 \mathrm{~m} \mathrm{~cm}^{-1}$.
(ii) Sodium amalgam (4%; 5.0 g) was stirred with the azepine (21) (0.2 g) in methanol (100 ml) overnight. The solution was filtered and evaporated and the residue was recrystallised from acetonitrile to give dimethyl 2,3,4,5-tetra-hydro-2-(1-methylindol-3-yl)-1-methylbenz[b]azepine-3,4-di-
carboxylate (24) ($0 \cdot 14 \mathrm{~g}, 69 \cdot 6 \%$), plates, m.p. $188-190^{\circ}$ (Found: $\mathrm{C}, 70 \cdot 7 ; \mathrm{H}, 6 \cdot 5 ; \mathrm{N}, 7 \cdot 1 . \quad \mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires C, $70.9 ; \mathrm{H}, 6.4 ; \mathrm{N}, 6.9 \%$), $\nu_{\text {max. }} 1732 \mathrm{~s}, 1602 \mathrm{~m}, 1580 \mathrm{w}$, and $1557 \mathrm{w} \mathrm{cm}^{-1}$.

Treatment of Indole with Dimethyl Acetylenedicarboxylate in Acetonitrile.-Indole (23.0 g) and dimethyl acetylenedicarboxylate (14.0 g) were heated under reflux in acetonitrile $(100 \mathrm{ml})$ for 6 days. The solvent was evaporated off and methanol (100 ml) added. After 2 days at 0° the precipitate was recrystallised from methanol to give dimethyl 2,3-di-hydro-2-(indol-3-yl)benz[b]azepine-3,4-dicarboxylate (18) (6.4 g) as pale yellow prisms, m.p. 240-242 ${ }^{\circ}$ (Found: C, $\mathbf{7 0 \cdot 1}$; $\mathrm{H}, 5 \cdot 2$; $\mathrm{N}, 7 \cdot 3 . \quad \mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires $\mathrm{C}, 70 \cdot 2 ; \mathrm{H}, 5 \cdot 3 ; \mathrm{N}$, $7 \cdot 5 \%$). The combined evaporated mother liquors were chromatographed on alumina (1.2 kg); elution with benzene (1.51) gave, first, tetramethyl 9 -(trans-1,2-dimethoxycarbonyl-ethyl)-1,2-trans-dihydrocarbazole-1,2,3,4-tetracarboxylate (3.8 g), m.p. 165-169 (from methanol) (Found: C, 57.6; H, $4 \cdot 8 ; \mathrm{N}, 2 \cdot 8 . \quad \mathrm{C}_{26} \mathrm{H}_{25} \mathrm{NO}_{12}$ requires $\mathrm{C}, 57 \cdot 5 ; \mathrm{H}, 4 \cdot 6 ; \mathrm{N}$, $2 \cdot 6 \%$), followed by dimethyl indol-3-ylfumarate ($0 \cdot 3 \mathrm{~g}$), m.p. 106- 108° (from ether) (lit., ${ }^{4} 109-110^{\circ}$). Elution with benzene-ether ($9: 1 \mathrm{v} / \mathrm{v}, 1 \mathrm{l}$) gave more azepine (18) $(5 \cdot 0 \mathrm{~g}), \mathrm{m} . \mathrm{p} .242-244^{\circ}$. Further elution with increasingly polar solvents gave, first, tetramethyl carbazole-1,2,3,4tetracarboxylate, fine yellow needles (6.1 g), m.p. 178$180^{\circ}$ (from methanol) (lit. ${ }^{24} 182-182 \cdot 5^{\circ}$), and then trimethyl 5,6-dihydro-6-oxophenanthridine-7,8,9-tricarboxylate (1.3 g) m.p. $276-278^{\circ}$ (from acetonitrile) (lit., ${ }^{4}$ 271-272 ${ }^{\circ}$.

The azepine (18) ($5 \cdot 27 \mathrm{~g}$) in benzene (100 ml) was heated under reflux whilst sodium dihydrobis(2-methoxyethoxy)aluminate (70% in benzene; 15 ml) was added dropwise. After reflux for 30 min , methanol was added until evolution of hydrogen ceased. Water (50 ml) was added and the mixture was extracted with ether ($5 \times 100 \mathrm{ml}$). The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated, and the residue, dissolved in methanol (20 ml), was cooled for 30 days. The solid precipitate was recrystallised from methanol to give 3,3a,4,5-tetrahydro-4-(indol-3-yl)benzo[b]furo [3,4-e]azepin-1-one (26) ($0.12 \mathrm{~g}, \mathbf{2 . 7 \%}$) as yellow microcrystals, m.p. $215-217^{\circ}$ (Found: C, 75.8; H, 5.1; N, 9.0. $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires C, $75.9 ; \mathrm{H}, 5 \cdot 1 ; \mathrm{N}, 8.9 \%$), $\nu_{\text {max. }} 3390 \mathrm{~m}$, $3330 \mathrm{~m}, 1725 \mathrm{~s}, 1650 \mathrm{~s}, 1604 \mathrm{~m}, 1570 \mathrm{~m}$, and $1510 \mathrm{w} \mathrm{cm}{ }^{-1}$. The mother liquors on cooling for 7 days, gave 2,3-dihydro-2-(indol-3-yl)benz[b]azepine-3,4-diyldimethanol (22) (20 mg), yellow rods, m.p. $195-197^{\circ}, \nu_{\text {max. }} 3400 \mathrm{~s}, 3260 \mathrm{~s}, \mathrm{br}, 1659 \mathrm{w}$, $1620 \mathrm{w}, 1600 \mathrm{~m}$, and $1573 \mathrm{w} \mathrm{cm}^{-1}$.

The lactone (26) (50 mg) in ether (10 ml) was stirred with lithium aluminium hydride (50 mg) for 1 h at room temperature. Methanol was added until evolution of hydrogen
${ }^{24}$ W. E. Noland, W. C. Kuryla, and R. F. Lange, J. Amer. Chem. Soc., 1959, 81, 6010.
ceased, followed by water (10 ml), and the mixture was extracted with ether ($3 \times 20 \mathrm{ml}$). The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated and the residue was recrystallised from methanol to give the diol (22) (8 mg , $15.8 \%) \mathrm{m} . \mathrm{p}$. and mixed m.p. 193- 197°.

The azepine (18) ($2 \cdot 1 \mathrm{~g}$) in dimethylformamide (10 ml) was added dropwise with stirring to a solution of phosphoryl chloride (1.0 g) in dimethylformamide (30 ml). The mixture was stirred at room temperature overnight and poured on crushed ice (100 g). The solution was made basic with aqueous 20% potassium hydroxide and slowly warmed to reflux temperature, with gradual addition of more base to maintain the alkalinity. The precipitate was filtered off
by the equi-inclination, multiple-film Weissenberg technique up to and including the eighth layer. A Weissenberg photograph of the zero layer of the same crystal mounted about the [010] axis was taken to permit correct indexing. Reflections on different film packs were scaled initially on the basis of exposure times and later optimised during structure refinement. The intensities were estimated visually and corrected for Lorentz and polarisation effects but not absorption.

When the overall scale factor and temperature factor had been obtained from a Wilson plot, ${ }^{25}$ the symbolic addition program (written by O. J. R. Hodder) was used to derive a trial structure. The signs of 390 reflections with $E>1 \cdot 3$

Table 5
Crystallographic data for compound (18) ${ }^{a}$
Atomic positions in fractional co-ordinates ${ }^{b}$

Atom	x / a	y / b	z / c	U_{11}	U_{22}	U_{38}	U_{12}	U_{18}	U_{23}
N(1)	$0 \cdot 28453(53)$	$0 \cdot 14230(44)$	$0 \cdot 33328(63)$	200(30)	356(25)	464(27)	177(41)	349(43)	025(38)
$\mathrm{N}\left(1^{\prime}\right)$	$0 \cdot 36929(70)$	$0 \cdot 72618(54)$	$0 \cdot 17986(61)$	645(40)	545(33)	$231(23)$	089(43)	408(50)	411 (57)
C(2)	$0 \cdot 43033(62)$	$0 \cdot 13927(48)$	$0 \cdot 37481$ (64)	269 (35)	288(25)	270(25)	$200(39)$	249(44)	183(42)
$\mathrm{C}(3)$	$0 \cdot 48044(58)$	$0 \cdot 19528(46)$	$0 \cdot 24943$ (58)	192(29)	306(25)	209(22)	120(37)	232(40)	185(40)
$\mathrm{C}(4)$	$0 \cdot 49768(56)$	$0 \cdot 33167(43)$	$0 \cdot 26219(57)$	165(28)	275(24)	219(22)	152(35)	292(39)	211 (39)
C(5)	$0 \cdot 41921$ (61)	$0 \cdot 39654(48)$	0.30103(65)	247(33)	288(25)	285(25)	129(39)	287(45)	131(44)
C(5a)	$0 \cdot 29453(62)$	$0 \cdot 36180(51)$	$0 \cdot 33637(64)$	217(32)	375(28)	249(25)	143(41)	212(42)	112(45)
C(6)	$0 \cdot 22808(75)$	$0 \cdot 45623(62)$	$0 \cdot 35210(76)$	384(41)	506(36)	352(30)	205(52)	354(54)	$422(58)$
$\mathrm{C}(7)$	$0 \cdot 10492(78)$	$0 \cdot 43826(73)$	$0 \cdot 37504(85)$	327(43)	753(49)	439(35)	$217(65)$	$436(62)$	537(70)
C(8)	$0 \cdot 04227(77)$	$0 \cdot 32163(76)$	$0 \cdot 38368$ (83)	$299(40)$	789(52)	399(35)	$153(65)$	323 (59)	295 (69)
$\mathrm{C}(9)$	$0 \cdot 10527(67)$	$0 \cdot 22786$ (66)	$0 \cdot 37281$ (80)	$153(36)$	666(44)	$401(32)$	155(57)	236(51)	080(57)
C(9a)	$0 \cdot 22972$ (65)	$0 \cdot 24327(55)$	$0 \cdot 34730(66)$	242(35)	443(32)	250(26)	141 (45)	208(45)	113(49)
$\mathrm{C}\left(2^{\prime}\right)$	$0 \cdot 49531$ (76)	$0 \cdot 76159(61)$	$0 \cdot 32724(74)$	419(40)	500(35)	319(29)	$251(50)$	402(55)	331 (57)
C(3')	$0 \cdot 46198(63)$	$0 \cdot 80919(48)$	$0 \cdot 44888(63)$	302(34)	313(26)	253(24)	203(39)	321 (45)	$211(44)$
$\mathrm{C}\left(3 \mathrm{a}^{\prime}\right)$	$0 \cdot 31053(68)$	$0 \cdot 80725(50)$	$0 \cdot 37162(63)$	404(38)	342(27)	200(23)	186(40)	315(47)	114(48)
C(4')	0.21426(77)	$0 \cdot 84642(65)$	$0 \cdot 42252(79)$	417(42)	572(39)	361 (31)	342(55)	380 (60)	309 (62)
$\mathrm{C}\left(5^{\prime}\right)$	$0 \cdot 06987(80)$	$0 \cdot 83072(84)$	$0 \cdot 30835(95)$	284(41)	971 (60)	526(41)	$564(79)$	443(65)	$412(74)$
$\mathrm{C}\left(6^{\prime}\right)$	$0 \cdot 02394(87)$	$0 \cdot 77655(85)$	$0 \cdot 14509(99)$	373(47)	896(61)	503(43)	464(81)	225(69)	097(78)
$\mathrm{C}\left(7^{\prime}\right)$	$0 \cdot 11195(90)$	$0 \cdot 73768(75)$	$0 \cdot 09056(87)$	545(52)	662(47)	349 (34)	193(63)	$151(65)$	-038(74)
$\mathrm{C}\left(7 \mathrm{a}^{\prime}\right)$	$0 \cdot 25867(74)$	$0 \cdot 75400(57)$	$0 \cdot 20228(72)$	447(40)	426(32)	274(27)	151 (47)	$311(52)$	128(55)
$3-\mathrm{COOCH}_{3}$	$0 \cdot 38219(65)$	$0 \cdot 13361(49)$	$0 \cdot 07302(66)$	318(34)	287(26)	294(27)	035(42)	207(47)	217(45)
$3-\mathrm{COOCH}_{3}$	$0 \cdot 67314(76)$	$0 \cdot 81509(47)$	$0 \cdot 04092(61)$	1176(50)	418(28)	332(24)	120(42)	-226(56)	379 (60)
$3-\mathrm{COOCH}_{3}$	$0 \cdot 36221(53)$	$0.01537(37)$	$0 \cdot 05793(50)$	604(30)	329(21)	274(19)	-017(31)	238(39)	204(39)
$3-\mathrm{COOCH}_{3}$	$0 \cdot 73522(98)$	0.05041 (69)	$0 \cdot 10666(89)$	$809(59)$	449(38)	$365(35)$	-423(59)	113(71)	016(74)
$4-\mathrm{COOCH}_{3}$	$0 \cdot 60691$ (62)	$0 \cdot 39009(47)$	$0 \cdot 21359(61)$	256(32)	298(25)	250(24)	069 (38)	346(44)	276(43)
$4-\mathrm{COOCH}_{3}$	$0 \cdot 67978(52)$	$0 \cdot 33590(39)$	$0 \cdot 17204(57)$	476(29)	426(23)	$514(25)$	187(39)	$721(46)$	207(41)
$4-\mathrm{COOCH}_{3}$	$0 \cdot 62129(48)$	$0 \cdot 50901(36)$	$0 \cdot 21705(55)$	370(25)	336(20)	547(25)	302(36)	653(41)	137(35)
$4-\mathrm{COOCH}_{3}$	$0 \cdot 73165(79)$	$0 \cdot 57089(64)$	0-17354(93)	405(41)	518(38)	613(42)	516(64)	623(66)	-075(59)

${ }^{a}$ The temperature factor T is $\exp \left[-2 \pi^{2}\left(U_{11} h^{2} a^{* 2}+U_{22} k^{2} b^{* 2}+U_{33^{2}} c^{* 2}+U_{12} h k a^{*} b^{*}+U_{13} h l a^{*} c^{*}+U_{28} k l b^{*} c^{*}\right]\right.$. ${ }^{\delta}$ Estimated standard deviations $\left(\times 10^{5}\right)$ in parentheses. ${ }^{6}$ Temperature factor $\left(\times 10^{4}\right)$, estimated standard deviation ($\times 10^{4}$) in parentheses.
and recrystallised from methanol to give dimethyl 1-[2-(NN-dimethylamidino)phenyl]-4-(indol-3-yl)buta-1,3-diene-2,3-dicarboxylate (27) ($2 \cdot 2 \mathrm{~g}, \mathbf{9 1} \cdot \mathbf{4} \%$) as pale yellow microcrystals, m.p. $152-154^{\circ}$ (Found: C, 69.6; H, 5.8; N, 9.8. $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{4}$ requires C, $69.6 ; \mathrm{H}, 5 \cdot 8 ; \mathrm{N}, 9.7 \%$), $\nu_{\text {max }} 3320 \mathrm{~s}$, $1695 \mathrm{~s}, 1640 \mathrm{~s}, 1604 \mathrm{~m}, 1593 \mathrm{~m}, 1568 \mathrm{w}$, and $1513 \mathrm{w} \mathrm{cm}^{-1}$.

Determination of the Crystal and Molecular Structure of Dimethyl 2,3-Dihydro-2-(indol-3-yl)benz[b]azepine-3,4-dicarboxylate (18).-Crystal data. $\quad \mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{4}, M=376 \cdot 4$. Crystals grown from slowly evaporating acetonitrile solutions were triclinic prisms elongated in the a-direction : $a=10 \cdot 46$, $b=11.50, c=8.85 \AA, \quad \alpha=91.5, \quad \beta=114 \cdot 6, \gamma=106.2$, $U=983.2 \AA^{3}, D_{\mathrm{m}}=1.31$ (by flotation in benzene-carbon tetrachloride), $Z=2, D_{\mathrm{c}}=1 \cdot 36, \quad F(000)=396$, space group $P \overline{1}, \mu=15.7 \mathrm{~cm}^{-1}$.

Structure determination. 2989 Independent reflections from a crystal, ca. $1.5 \times 1 \times 1 \mathrm{~mm}$, mounted about the [100] axis, were recorded with $\mathrm{Cu}-K_{\alpha}$ radiation ($\lambda 1.5418 \AA$)
were determined and an E-map was computed from which all non-hydrogen atoms were located.

449 Unobserved reflections were removed and the trial structure, with individual isotropic temperature factors, was refined by the least-squares method. After three cycles the R factor was 19.3%. Scale factors for each film pack were then refined by two cycles of a least-squares procedure and the positions of hydrogen atoms, other than those in the two methyl groups, were calculated setting $\mathrm{C}-\mathrm{H}$ and $\mathrm{N}-\mathrm{H}$ bond lengths at 1.1 and $1.0 \AA$ respectively. Hydrogen temperature factors were set equal to those of the bonded heavy atoms. Inclusion of these data in a further two cycles of least-squares refinement of positional and isotropic temperature factors for heavy atoms, omitting reflections

[^9]suffering from obvious extinction effects, reduced the R factor to $\mathbf{1 6} \cdot 1 \%$.

Anistropic temperature parameters were introduced for all heavy atoms and after four cycles of least-squares refinement the R factor was $11 \cdot 4 \%$. Final positional and anisotropic temperature factors appear in Table 5. A projection of the unit cell down the a-axis is shown in Figure 1. Interatomic distances and interbond angles
appear in Figures 2 and 3. The estimated standard deviations of the interatomic distances and interbond angles are in the range $0.008-0.014 \AA$ and $0.6-0.9^{\circ}$, respectively.

We thank the S.R.C. for a studentship (to J. N. B.) and for a fellowship (to T. S. C.).
[1/1735 Received, 22nd September, 1971]

[^0]: ${ }^{1}$ Part XLVI, R. M. Acheson and J. McK. Woollard, J. Chem. Soc. (C), 1971, 3296.
 ${ }^{2}$ O. Diels, K. Alder, and W. Lubbert, Annalen, 1931, 490, 277.
 ${ }_{3}$ D. C. Johnson, Ph.D. Thesis, University of Minnesota, 1961, see also Diss. Abs., 1962, 23, 834.
 ${ }_{4}^{4}$ R. W. Campbell, Ph.D. Thesis, University of Minnesota, 1961, see also Diss. Abs., 1962, 22, 3851.

[^1]: ${ }^{5}$ O. Diels, K. Alder, H. Winkler, and E. Petersen, Annalen, 1932, 498, 1 .
 ${ }^{8}$ R. M. Acheson, Adv. Heterocyclic Chem., 1963, 1, 125.
 7 Preliminary report, R. M. Acheson and J. N. Bridson, Chem. Comm., 1971, 1225.
 ${ }^{8}$ R. M. Acheson, M. W. Foxton, and A. R. Hands, J. Chem. Soc. (C), 1968, 387.

 - H. Plieninger and D. Wild, Chem. Ber., 1966, 99, 3070.

[^2]: 10 T. W. Doyle, Canad. J. Chem., 1970, 48, 1629.
 ${ }_{11}$ R. M. Acheson and N. G. Wright, Chem. Comm., 1971, 1421.
 ${ }^{12}$ M.-S. Lin and V. Snieckus, J. Org. Chem., 1971, 36, 645.
 ${ }^{13}$ R. Hoffman and R. B. Woodward, Accounts Chem. Res., 1968, 1, 17.

[^3]: ${ }^{a}$ These assignments could be interchanged. ${ }^{b}$ Broad, disappears on addition of $\mathrm{D}_{2} \mathrm{O}$. ${ }^{c}$ Doublet after addition of $\mathrm{D}_{2} \mathrm{O}$. ${ }^{\boldsymbol{d}}$ The spectrum obtained in the presence of $\mathrm{D}_{2} \mathrm{O}$ was computersimulated ${ }^{26}$ with the parameters given, and matched the observed spectrum in relative peak intensities and to within $\pm 0.5 \mathrm{~Hz}$ for each resonance line. ${ }^{e}$ Quartet after addition of $\overline{\mathrm{D}}_{2} \mathrm{O}$. ${ }_{f}$ Triplet after addition of $\mathrm{D}_{2} \mathrm{O}$. ${ }^{g}$ Singlet after addition of $\mathrm{D}_{2} \mathrm{O} .^{k}$ Simplifies after addition of $\mathrm{D}_{2} \mathrm{O}$.

[^4]: ${ }^{18}$ I. T. Millar and H. D. Springall, 'Sidgwick's Organic Chemistry of Nitrogen,' Clarendon Press, Oxford, 1966.
 ${ }^{19}$ R. H. de Wolfe, J. Amer. Chem. Soc., 1964, 86, 864.

[^5]: ${ }^{20}$ R. M. Acheson, R. T. Aplin, and D. R. Harrison, J. Chem. Soc. (C), 1968, 383.

[^6]: ${ }_{a}$ The angles between the plane through atoms $\mathrm{N}(1), \mathrm{C}(4)$, $\mathrm{C}(5)$, and $\mathrm{C}(9 \mathrm{a})$ and the planes through the $3-$ and $4-\mathrm{CO}_{2} \mathrm{Me}$ groups are $85 \cdot 8$ and 2.3°, respectively. ${ }^{b}$ Not included in calculation to determine the plane.

[^7]: ${ }^{21}$ P. Ruggli and O. Schmid, Helv. Chim. Acta, 1935, 18, 1215.

[^8]: ${ }^{23}$ H. R. Snyder and E. L. Eliel, J. Amer. Chem. Soc., 1948, 70, 1703.

[^9]: ${ }^{25}$ A. J. C. Wilson, Acta Cryst., 1949, 2, 318.
 ${ }_{26}$ C. L. Wilkins and C. E. Klopfenstein, J. Chem. Educ., 1966, 43, 10; translated into Egtran by P. C. Bell, Part II, Thesis, Oxford, 1967.

